Support Vector Machines for Thai Phoneme Recognition
نویسندگان
چکیده
The Support Vector Machine (SVM) has recently been introduced as a new pattern classification technique. It learns the boundary regions between samples belonging to two classes by mapping the input samples into a high dimensional space, and seeking a separating hyperplane in this space. This paper describes an application of SVMs to two phoneme recognition problems: 5 Thai tones, and 12 Thai vowels spoken in isolation. The best results on tone recognition are 96.09% and 90.57% for the inside test and outside test, respectively, and on vowel recognition are 95.51% and 87.08% for the inside test and outside test, respectively.
منابع مشابه
Robust Speech Recognition Using KPCA-Based Noise Classification
This paper proposes an environmental noise classification method using kernel principal component analysis (KPCA) for robust speech recognition. Once the type of noise is identified, speech recognition performance can be enhanced by selecting the identified noise specific acoustic model. The proposed model applies KPCA to a set of noise features such as normalized logarithmic spectrums (NLS), a...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملDynamic Time alignment in Support Vectore Machines for Recognition Systems
— We propose a generic recognition system based on support vector machines. The system is capable of performing continuous time recognition, whether it be digits or phonemes. The heart of the system is a parameterized time aligned kernel which is tailored to discriminate each digit/phoneme and hence gives a novel way to estimate/improve performance. The scheme is fully scalable, however the com...
متن کاملRobustness of Phoneme Classification Using Support Vector Machines: a Comparison between Plp and Acoustic Waveform Representations
Robustness of phoneme recognition to additive noise is investigated for PLP and acoustic waveform representations of speech using support vector machines (SVMs) combined via error-correcting code methods. While recognition in the PLP domain attains superb accuracy on clean data, it is significantly affected by mismatch between training and testing noise levels. The classification in the high-di...
متن کاملSupport Vector Machines for Postprocessing of Speech Recognition Hypotheses
In this paper, we introduce an approach to improve the recognition performance of a Hidden Markov Model (HMM) based monophone recognizer using Support Vector Machines (SVMs). We developed and examined a method for re-scoring the HMM recognizer hypotheses by SVMs in a phoneme recognition framework. Compared to a stand-alone HMM system, an improvement of 9.2% was reached on the TIMIT database and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2001